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An analytical expression is derived for the time-averaged radiation force induced by
an acoustic wave field between N particles freely suspended in a fluid. Both the host
fluid and the medium inside the particles are assumed to be ideal compressible fluids.
The incident field is assumed to be moderate so that the scattered and refracted
fields of the particles can be taken to linear approximation. Multiple re-scattering
of sound between the particles and shape modes of all orders are allowed for. No
restrictions are imposed on the size of the particles, the separation distances between
them and their number. The present study substantially extends the existing theory,
which is based on essential simplifications and valid only for pairwise interactions.
In particular, the new theory allows one to follow continuously the evolution of
the radiation interaction force from large to small separation distances. The general
results are illustrated in the case of two air bubbles in water. It is shown that generally
the interbubble force behaves in far more complicated way than is predicted by the
classical Bjerknes theory.

1. Introduction
The intrinsically nonlinear nature of wave motion in fluids results in a great

variety of nonlinear effects. One such effect is the time-averaged radiation interaction
forces that are induced by an acoustic wave field between foreign inclusions (bubbles,
drops, etc.) suspended in a fluid. Interest in this phenomenon is motivated by a
number of important applications, such as acoustic cavitation, acoustic coagulation
and precipitation of aerosols, biomedical ultrasonics, etc. (Brennen 1995; Mednikov
1965; Rozenberg 1973). The existing theory of acoustic interaction forces is based on
an investigation of pairwise interactions between particles, even though the ultimate
aim is simulation of multi-particle structures. Most of the theoretical work deals with
bubble–bubble interactions; for reviews see Crum (1975), Pelekasis & Tsamopoulos
(1993a, b), Doinikov & Zavtrak (1995, 1997), and Mettin et al. (1997). There are also
papers on the interaction forces between particles of different nature (König 1891;
Embleton 1962; Mednikov 1965; Weiser & Apfel 1984; Doinikov & Zavtrak 1996;
Doinikov 1996).

Because of mathematical difficulties, early investigators substantially simplified
the problem. They started from the following basic assumptions: (a) the surrounding
medium is an ideal incompressible fluid; (b) the spacing between objects is much larger
than their size; (c) the gas within bubbles obeys the adiabatic law, and liquid drops
can be treated as rigid spheres; (d) nonlinear oscillations of the interacting objects are
negligible. Subsequent studies have attempted to improve the theory, examining what
happens to the interaction force when one of the above assumptions is discarded
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while the others remain the same. In particular, investigations of the interaction
forces at small separation distances for various pairs of particles (bubble–bubble,
bubble–solid, bubble–drop, solid–solid) have been carried out (Zabolotskaya 1984;
Doinikov & Zavtrak 1995, 1996; Doinikov 1996). Their results give an explanation
for stable bubble clusters, ‘bubble grapes’, which were observed experimentally by
Kobelev, Ostrovskii & Sutin (1979), and also predict a number of new interesting
effects. For the case of two bubbles, the situation has also been considered where the
separation distance, remaining large compared with the bubble radii, is comparable
with or more than the wavelength of sound (Zheng & Apfel 1995; Doinikov & Zavtrak
1997). Under such conditions, the calculation of the interaction force requires allowing
for the compressibility of the host fluid. This, apart from a modification of the original
force, results in two additional long-range components inversely proportional to the
separation distance instead of the distance squared, one of these acting along the
centreline of the bubbles and the other along the gradient of the imposed acoustic
field. Moreover, the sign of the combined force becomes dependent on the separation
distance, which can give rise to bound bubble pairs with some stable spacing.

The present state of the art in mathematics makes it possible to develop a more
general theory that would allow for the compressibility of the host fluid and the
internal medium of particles, multiple rescattering of sound between the particles
and their shape modes, while at the same time being free of any restrictions on the
size of the particles, the spacing between them, the wavelength of sound outside and
inside the particles, and moreover valid for an arbitrary number of particles. The
only limitations would be the assumptions that the media outside and inside particles
are inviscid and the forcing is relatively weak. This approach could recover, integrate
and substantially extend all the currently available analytical results. In particular,
specifying appropriately the parameters of the host fluid and the media inside in-
teracting objects, we would be able to obtain the interaction force between various
pairs of objects (bubble–bubble, bubble–drop, drop–drop) for arbitrary separation
distances and angles of sound incidence, which would allow us to follow continuously
the evolution of the interaction force from large to small separation distances. It is
the purpose of the present research to develop such a theory.

2. Theory
Let N particles (bubbles or drops, or both) be freely suspended in a fluid irradiated

by an acoustic wave field. Assume that (a) the media outside and inside the particles
are ideal compressible fluids subject to the Euler equation; (b) the particles are
spherical at rest; (c) the incident field is moderate so that the scattered and refracted
fields of the particles can be taken in linear approximation; (d) sufficiently long time
has elapsed since the sound was turned on so that free oscillations of the particles
and associated transient processes have died out and the particles now oscillate with
the driving frequency alone. The purpose of the research is to derive an analytical
expression, accurate to the second order in the acoustic pressure amplitude, for the
time-averaged interaction force induced by the incident acoustic field between the
particles, provided that no restrictions are imposed on the radii of the particles,
the separations between them and the wavelength of sound outside and inside the
particles, and that shape modes of all orders and multiple re-scattering of sound
between the particles are allowed for. It is pertinent to recall here that an inviscid
fluid has a useful feature as regards the acoustic radiation force. Namely, though this
force is a nonlinear effect, quadratic in the acoustic pressure amplitude, its calculation
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Figure 1. Geometry of the system.

in the context of inviscid fluid behaviour only requires knowledge of the linear
scattered field of the particles. This feature, which significantly facilitates the task, is
used in the present study.

The geometry of the system to be investigated is shown in figure 1. The motion of
the particles is observed with reference to the global Cartesian coordinates (x, y, z)
with the unit vectors ex, ey , ez . Each particle has also its own local spherical coordinate
system (rj , θj , εj), j = 1, 2, . . . N, the origin of which is at its equilibrium centre.

2.1. Incident field

The velocity potential of the incident field is taken in the following general form:

ϕ
(j)
inc(rj , t) = e−iωt

∞∑
n=0

n∑
m=−n

A(j)
nmjn(krj)Ynm(θj, εj), (2.1)

where the index (j) implies that (2.1) gives the incident field in the vicinity of the jth
particle, t is time, ω the angular driving frequency, k the wavenumber in the host
fluid, jn the spherical Bessel function, and Ynm the spherical harmonics. The multipole
coefficients A(j)

nm, which are responsible for a specific type of incident field, are assumed
here to be known. Explicit expressions for these coefficients in the cases of a plane
travelling wave and a plane standing wave are given in § 2.4. The spherical harmonics
Ynm are defined as

Ynm(θ, ε) =

[
(2n+ 1)(n− m)!

4π(n+ m)!

]1/2

Pm
n (cos θ)eimε, Yn(−m)(θ, ε) = (−1)mYnm(θ,−ε), (2.2)

where Pm
n (x) denotes the associated Legendre polynomials given by (Abramowitz &

Stegun 1972)

Pm
n (x) = (−1)m(1− x2)m/2

dmPn(x)

dxm
, m > 0. (2.3)

2.2. Scattered and refracted fields

The general expressions for the scattered (outside) field and the refracted (inside) field
of the jth particle, satisfying the linear equations of motion of an ideal compressible
fluid, can be written as

ϕ(j)
sca(rj , t) = e−iωt

∞∑
n=0

n∑
m=−n

B(j)
nmh

(1)
n (krj)Ynm(θj, εj), (2.4)
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ϕ
(j)
ref(rj , t) = e−iωt

∞∑
n=0

n∑
m=−n

C (j)
nmjn(kjrj)Ynm(θj, εj), (2.5)

where B(j)
nm and C (j)

nm are, respectively, the scattering and refraction coefficients to be
determined by the boundary conditions at the surface of the jth particle, h(1)

n is the
spherical Hankel function of the first kind, and kj is the wavenumber inside the
jth particle. Since we are to calculate the force on the jth particle, we must know
multipole expansions for the scattered fields of all the other particles in terms of the
spherical coordinates attached to the jth particle. This can be achieved by using the
so-called addition theorems for spherical wave functions, see Koc & Chew (1998). As
a result, the scattered field of the lth particle near the surface of the jth particle can
be represented as

ϕ(lj)
sca (rj , t) = e−iωt

∞∑
n=0

n∑
m=−n

B(lj)
nm jn(krj)Ynm(θj, εj), (2.6)

where the coefficients B(lj)
nm are given by

B(lj)
nm =

∞∑
ν=0

ν∑
µ=−ν

B(l)
νµKnmνµ(k, rlj), (2.7)

the vector rlj = pj − pl is drawn from the equilibrium centre of the lth particle to
that of the jth particle, and pj is the position vector of the jth particle with respect
to the global coordinates, see figure 1. The connection coefficients Knmνµ are specified
by

Knmνµ(k, r) = (−1)min−ν[4π(2n+ 1)(2ν + 1)]1/2

n+ν∑
ν ′=|n−ν|

iν
′
h

(1)
ν ′ (kr)Yν ′µ−m(θ, ε)

×(2ν ′ + 1)−1/2(νn00|νnν ′0)(νnµ′m|νnν ′µ′′), (2.8)

where µ′ = −µ, µ′′ = m − µ, and (j1j2m1m2|j1j2jm) denotes the Clebsch–Gordan
coefficients as defined in Abramowitz & Stegun (1972).

The total acoustic field in the vicinity of the jth particle can now be written as

Φj(rj , t) = ϕ
(j)
inc + ϕ(j)

sca +

N∑
l=1
l 6=j

ϕ(lj)
sca . (2.9)

To obtain the unknown coefficients B(j)
nm and C (j)

nm, the boundary conditions at the
surface Sj(t) of the jth particle are applied. To linear approximation this surface can
be represented as (Lamb 1945)

Sj(t) : fj(rj , t) ≡ rj − Rj − e−iωt

∞∑
n=0

n∑
m=−n

a(j)
nmYnm(θj, εj) = 0, (2.10)

where Rj is the equilibrium radius of the jth particle and the amplitudes of the surface
modes a(j)

nm are yet to be determined. It is assumed that |a(j)
nm| � Rj since the forcing is

weak. Combining the kinematical boundary condition,

∂fj

∂t
+ ∇Φj · ∇fj = 0 at rj = Rj, (2.11)
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with the boundary condition for the normal velocities on the outer and inner sides of
Sj(t),

∂Φj

∂rj
=
∂ϕ

(j)
ref

∂rj
at rj = Rj, (2.12)

one obtains

∂ϕ
(j)
ref

∂rj
= −∂fj

∂t
at rj = Rj. (2.13)

Substituting (2.5) and (2.10), one expresses a(j)
nm in terms of the refraction coefficients

a(j)
nm =

ikj
ω
j ′n(kjRj)C

(j)
nm, (2.14)

where the prime denotes differentiation with respect to the argument in parenthe-
ses. Upon substitution of (2.1), (2.4)–(2.6) and (2.9), (2.12) also yields an equation
connecting the scattering and refraction coefficients

A(j)
nmj
′
n(xj) + B(j)

nmh
(1)′
n (xj) +

N∑
l=1
l 6=j

B(lj)
nm j

′
n(xj) = C (j)

nmyjj
′
n(yj)/xj, (2.15)

where xj = kRj and yj = kjRj .
Another equation is provided by the boundary condition for normal stresses

P0 + Pσj − ρ0

∂Φj

∂t
= Pj0 − ρj ∂ϕ

(j)
ref

∂t
at rj = Rj, (2.16)

where P0, ρ0 are the equilibrium pressure and density of the host fluid, Pj0, ρj are
the equilibrium pressure and density inside the jth particle, and Pσj is the pressure of
surface tension, given by (Prosperetti 1977)

Pσj(θj, εj , t) = σj∆fj |Sj =
2σj
Rj

+
σj

R2
j

e−iωt

∞∑
n=0

n∑
m=−n

(n− 1)(n+ 2)a(j)
nmYnm(θj, εj), (2.17)

σj being the surface tension coefficient at the interface of the host fluid and the jth
particle. Substituting (2.1), (2.4)–(2.6), (2.9) and (2.17) into (2.16) and using (2.14), one
obtains the trivial relation Pj0 = P0 + 2σj/Rj and the second equation connecting the
scattering and refraction coefficients,

A(j)
nmjn(xj) + B(j)

nmh
(1)
n (xj) +

N∑
l=1
l 6=j

B(lj)
nm jn(xj) = α(j)

n C
(j)
nm, (2.18)

where

α(j)
n =

ρj

ρ0

jn(yj)− yjσj(n− 1)(n+ 2)

ρ0R
3
j ω

2
j ′n(yj). (2.19)

Combining (2.15) and (2.18), one can express the refraction coefficients in terms of
the scattering coefficients

C (j)
nm = β(j)

n B
(j)
nm, (2.20)



6 A. A. Doinikov

where

β(j)
n =

xj

Re{H (j)
n } [jn(xj)h

(1)′
n (xj)− j ′n(xj)h(1)

n (xj)], (2.21)

H (j)
n = yjj

′
n(yj)h

(1)
n (xj)− xjα(j)

n h
(1)′
n (xj), (2.22)

and Re means ‘the real part of’. Eliminating B(lj)
nm and C (j)

nm from (2.15) and (2.18) with
the aid of (2.7) and (2.20), one finds

B(j)
nm + Q(j)

n +

N∑
l=1
l 6=j

∞∑
ν=0

ν∑
µ=−ν

Knmνµ(k, rlj)B
(l)
νµ = −Q(j)

n A
(j)
nm, (2.23)

where

Q(j)
n = Re{H (j)

n }/H (j)
n . (2.24)

Equation (2.23) provides us with a set of equations for calculating the unknown
scattering coefficients. This set is four-dimensional. The first, ‘horizontal’, dimension
is given by the index ν. The second, ‘vertical’, dimension is set by the index n.
These two indices are determined by the number of terms that are retained in
the multipole expansions of the incident, scattered, and refracted fields. The third,
‘spatial’, dimension is established by the index m (and µ), which ranges from −n to
n. In the case of two particles, non-vanishing coefficients with non-zero m appear
if the wavevector is not aligned with the centreline of the particles. Needless to say
that, in the case of many particles, such coefficients are always present. The fourth,
‘particle’, dimension is assigned by the superscript j (and l), which is responsible for
the number of particles in the system. It is obvious that in the general case the set of
equations (2.23) can be solved only numerically, setting the index n (and hence ν) to
a limiting value. As noted above, physically this means that we restrict our analysis
to a finite number of the multipole contributions.

2.3. Calculation of the force

The general formula for the acoustic radiation force on an arbitrary object in an ideal
compressible fluid is given by (Alekseev 1983)

F = ρ0

∫
S0

〈
1

2
v2n− 1

2c2

(
∂Φ

∂t

)2

n− v(v · n)
〉

dS0. (2.25)

where S0 is the unperturbed surface of the object, n the outward normal to S0, c
the speed of sound in the host fluid, v = ∇Φ the fluid velocity, and 〈 〉 denotes an
average over time. Applying this formula to our case and substituting in it all the
required quantities from the preceding subsection, the force on the jth particle can
be represented as

F j = −ρ0

4
Re

∞∑
n=0

∞∑
n′=0

n∑
m=−n

n′∑
m′=−n′

C (j)
nmC

(j)∗
n′m′ {[x2

j α
(j)
n α

(j)
n′ + y2

j j
′
n(yj)j

′
n′(yj)]

×I 1(n, m, n
′, m′) + 2yjα

(j)
n j
′
n′(yj)I 2(n, m, n

′, m′)− α(j)
n α

(j)
n′ I 3(n, m, n

′, m′)}, (2.26)

where

I 1(n, m, n
′, m′) =

∫ 2π

0

dε

∫ π

0

dθ sin θ Ynm(θ, ε)Y ∗n′m′(θ, ε)er, (2.27)
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I 2(n, m, n
′, m′) =

∫ 2π

0

dε

∫ π

0

dθ sin θ Y ∗n′m′(θ, ε)∇tYnm(θ, ε), (2.28)

I 3(n, m, n
′, m′) =

∫ 2π

0

dε

∫ π

0

dθ sin θ[∇tYnm(θ, ε) · ∇tY ∗n′m′(θ, ε)]er, (2.29)

the asterisk denotes the complex conjugate, and the operator ∇t is defined as

∇t = eθ
∂

∂θ
+

eε
sin θ

∂

∂ε
. (2.30)

Values of integrals (2.27)–(2.29) and an explanation of how they are calculated are
given in the Appendix. Substituting them into (2.26) and using (2.20), one obtains the
final expression for the acoustic radiation force on the jth particle:

F j = ρ0 Re

∞∑
n=0

n∑
m=−n

D(j)
n B

(j)
nm

{
2
√

(n+ 1)2 − m2B
(j)∗
(n+1)mez

+
√

(n− m+ 1)(n− m+ 2)B(j)∗
(n+1)(m−1)(ex + iey)

−√(n+ m+ 1)(n+ m+ 2)B(j)∗
(n+1)(m+1)(ex − iey)

}
, (2.31)

where

D(j)
n =

β(j)
n β

(j)∗
n+1

4
√

(2n+ 1)(2n+ 3)
{[n(n+ 2)− x2

j ]α
(j)
n α

(j)
n+1 + nyjα

(j)
n j
′
n+1(yj)

−(n+ 2)yjα
(j)
n+1j

′
n(yj)− y2

j j
′
n(yj)j

′
n+1(yj)}. (2.32)

Note that (2.31) involves both the primary and the secondary radiation forces. This
equation also shows that the force is expressed in terms of the liner scattering
coefficients B(j)

nm multiplied by the known functions D(j)
n . Therefore the main point in

calculating the force is the calculation of the coefficients B(j)
nm from the set of equations

(2.23). If they are known, then the force can easily be found from (2.31) for any values
of the system parameters.

2.4. Examples of explicit expressions for the coefficients A(j)
nm

In this subsection, it is shown how the coefficients A(j)
nm are found, which specify the

incident field in the vicinity of the jth particle. By way of example let us consider two
types of forcing – a plane travelling wave and a plane standing wave.

2.4.1. Plane travelling wave

In terms of the global coordinates (figure 1), the velocity potential of a plane
travelling wave can be represented as

ϕinc(r, t) = A exp (ik · r − iωt), (2.33)

where k is the wavevector in the host fluid. Taking into consideration that r = pj + rj ,
(2.33) can be rewritten in terms of the coordinates related to the jth particle as

ϕ
(j)
inc(rj , t) = A exp (ik · pj − iωt) exp (ik · rj). (2.34)

By using the well-known multipole expansion for exponential function (Abramowitz
& Stegun 1972), one obtains

ϕ
(j)
inc(rj , t) = 4πA exp (ik · pj)e−iωt

∞∑
n=0

n∑
m=−n

inY ∗nm(θI , εI )jn(krj)Ynm(θj, εj), (2.35)
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Figure 2. Case of two particles.

where θI , εI are the angles that specify the direction of the wavevector k in the global
coordinates. Comparisons of (2.35) with (2.1) finally yields

A(j)
nm = 4πA exp (ik · pj)inY ∗nm(θI , εI ). (2.36)

2.4.2. Plane standing wave

The velocity potential of a plane standing wave can be written as

ϕinc(r, t) = A exp (−iωt) cos (k · r + kdo), (2.37)

where do is the distance between the origin of the coordinate system shown in figure 1
and the nearest velocity node plane of the incident standing wave. In terms of the
coordinates related to the jth particle, (2.37) can be rewritten as

ϕ
(j)
inc(rj , t) = A exp (−iωt) cos (k · rj + kdj) = 1

2
A exp (−iωt)[exp (ikdj) exp (ik · rj) + c.c.],

(2.38)

where dj is now the distance between the velocity node plane and the equilibrium
centre of the jth particle. Using again the multipole expansion for the function
exp (ik · rj) and comparing the resulting expression with (2.1), one finds

A(j)
nm = 2πAinY ∗nm(θI , εI )[exp (ikdj) + (−1)n exp (−ikdj)]. (2.39)

2.5. Case of two-particle interaction

In the case of two particles, the set of equations (2.23) reduces to

B(1)
nm + Q(1)

n

∞∑
ν=0

ν∑
µ=−ν

Knmνµ(k, r21)B
(2)
νµ = −Q(1)

n A
(1)
nm, (2.40)

B(2)
nm + Q(2)

n

∞∑
ν=0

ν∑
µ=−ν

Knmνµ(k, r12)B
(1)
νµ = −Q(2)

n A
(2)
nm. (2.41)

Choosing the global coordinate system as shown in figure 2 and denoting by L
the distance between the equilibrium centres of the particles, one has r12 = Lez ,
r21 = −Lez and hence θ12 = 0, θ21 = π, ε12 = ε21 = 0. Using the properties of spherical
harmonics (Varshalovich, Moskalev & Khersonskii 1975)

Ynm(0, ε) = δm0

√
(2n+ 1)/4π, Ynm(π, ε) = δm0(−1)n

√
(2n+ 1)/4π, (2.42)
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where δm0 is the Kronecker delta, (2.40) and (2.41) can be simplified to

B(1)
nm + Q(1)

n

∞∑
ν=|m|

K (1)
nmνB

(2)
νm = −Q(1)

n A
(1)
nm, (2.43)

B(2)
nm + Q(2)

n

∞∑
ν=|m|

K (2)
nmνB

(1)
νm = −Q(2)

n A
(2)
nm, (2.44)

where

K (j)
nmν = (−1)min−ν

√
(2n+ 1)(2ν + 1)

n+ν∑
l=|n−ν|

(−1)jl ilh(1)
l (kL)

×(νn00|νnl0)(νn− mm|νnl0), j = 1, 2. (2.45)

Eliminating B(2)
nm from the equation for B(1)

nm and vice versa (2.43) and (2.44) can be
represented in the following form, which may be more convenient for numerical
simulation:

∞∑
ν=|m|

(δnν −U(j)
nmν)B

(j)
νm = V (j)

nm , (2.46)

where

U(j)
nmν = Q(j)

n

∞∑
l=|m|

Q
(3−j)
l K

(j)
nmlK

(3−j)
lmν , (2.47)

V (j)
nm = Q(j)

n

−A(j)
nm +

∞∑
l=|m|

Q
(3−j)
l K

(j)
nmlA

(3−j)
lm

 . (2.48)

Equation (2.31), which gives the force, is also reduced to

F j = ρ0Re

∞∑
n=0

n∑
m=−n

D(j)
n B

(j)
nm

{
2
√

(n+ 1)2 − m2B
(j)∗
(n+1)mez

+
[√

(n− m+ 1)(n− m+ 2)B(j)∗
(n+1)(m−1)

−√(n+ m+ 1)(n+ m+ 2)B(j)∗
(n+1)(m+1)

]
ex

}
. (2.49)

Finally, the multipole coefficients A(j)
nm for a plane travelling wave can be written as

A(1)
nm = 4πAinY ∗nm(θI , 0), A(2)

nm = exp (ikL cos θI )A
(1)
nm, (2.50)

and those for a plane standing wave are given by (2.39) with the proviso that εI = 0,
d1 = do and d2 = do + L cos θI .

2.6. Forces on gas bubbles in the limit xj, yj , Rj/rlj � 1; krlj is arbitrary

In this subsection, (2.31) is applied to gas bubbles (ρj � ρ0), assuming that the
wavelength of sound in the host liquid, λ = 2π/k, the wavelength of sound inside
the bubbles, λj = 2π/kj , and the separation distances rlj are much larger than the
bubble radii Rj (xj, yj , Rj/rlj � 1), while the ratio rlj/λ is arbitrary. The ultimate goal
of this subsection is to show that the new theory contains earlier results as a limiting
case.
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By using asymptotic expressions for the functions jn(x) and h(1)
n (x) in the limit

x→ 0 (Abramowitz & Stegun 1972), from (2.19) and (2.21), with accuracy up to the
leading terms in xj and yj , one finds

α
(j)
0 ≈ ρj

ρ0

− 2σjy
2
j

3ρ0ω2R3
j

, α
(j)
1 ≈ ρjyj

3ρ0

, α
(j)
2 ≈

y2
j

15

(
ρj

ρ0

− 2ω2
2j

3ω2

)
, (2.51)

β
(j)
0 ≈ − 3i

xjy
2
j

, β
(j)
1 ≈ 9i

x2
j yj
, β

(j)
2 ≈ 225i

2x3
j y

2
j

(
1 +

2ω2
2j

3ω2

)−1

, (2.52)

where ω2j =
√

12σj/ρ0R
3
j is the resonant frequency of the quadrupole surface mode

of the jth bubble. Substituting (2.51) and (2.52) into (2.22), (2.24) and (2.32), one has

Q
(j)
0 ≈ ixj

sj
, Q

(j)
1 ≈

x3
j

9
(3i + x3

j ), Q
(j)
2 ≈

ix5
j µj

(1− ω2
2j/ω

2) + ix5
j µj

, (2.53)

D
(j)
0 ≈ −

√
3

4x3
j

, D
(j)
1 ≈ −

1− ω2
2j/ω

2

4
√

15x5
j µj

, (2.54)

where

sj = 1− ω2
j

ω2
+ ixj, µj =

1

45

(
1 +

2ω2
2j

3ω2

)
, (2.55)

and ωj is the monopole resonance frequency of the jth bubble, defined as

ωj =

(
3ρjc

2
j

ρ0R
2
j

− 2σj

ρ0R
3
j

)1/2

, (2.56)

cj being the speed of sound in the gas within the jth bubble. Finally, from (2.23),
with the same accuracy, one obtains

B(j)
nm ≈ −Q(j)

n A
(j)
nm − Q(j)

n

N∑
l=1
l 6=j

Knm00(k, rlj)B
(l)
00 . (2.57)

This equation shows that the order of the scattering coefficients is determined by the
first term on the right-hand side, which is due to the direct impact of the incident
field, whereas the second is a correction that is caused by the scattered field from the
other bubbles.

Analysis of (2.53) and (2.57) allows us to make the following inferences about the
order of the scattering coefficients:

B
(j)
00 ∼ xj + O(x2

j ), B
(j)
1m ∼ x3

j + O(x4
j ),

B
(j)
2m ∼ x5

j + O(x6
j ), . . . , B(j)

nm ∼ x2n+1
j + O(x2n+2

j ).
(2.58)

These equations, together with (2.54), allow us to estimate the order of the successive
terms of the series (2.31):

D
(j)
0 B

(j)
00B

(j)∗
1m ∼ xj + O(x2

j ), D
(j)
1 B

(j)
1mB

(j)∗
2m ∼ x3

j , . . . , D(j)
n B

(j)
nmB

(j)∗
n+1m ∼ x2n+1

j . (2.59)

It immediately follows that the main contribution to the force comes from the zero
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term and results in

F j = −
√

3ρ0√
8x3

j

Re{√2B(j)
00B

(j)∗
10 ez + B

(j)
00B

(j)∗
1–1(ex + iey)− B(j)

00B
(j)∗
11 (ex − iey)}. (2.60)

The scattering coefficients appearing here are given by

B
(j)
00 = −xj

sj

iA(j)
00 +

N∑
l=1
l 6=j

xl

sl
h

(1)
0 (krlj)A

(l)
00

 , (2.61)

B
(j)
1m = −x

3
j

3

iA(j)
1m −

√
4π

N∑
l=1
l 6=j

xl

sl
h

(1)
1 (krlj)Y

∗
1m(θlj , εlj)A

(l)
00

 , m = −1, 0, 1. (2.62)

The first (leading) terms in brackets on the right-hand sides of (2.61) and (2.62)
provide the primary radiation forces. It is easy to verify, substituting (2.36) and (2.39)
for A(j)

nm, that when only these terms are retained, formula (2.60) gives the well-known
expressions for the primary radiation force acting on the jth bubble in, respectively,
a plane travelling wave and a plane standing wave:

F (tr)
Pj = 2πρ0|A|2x2

j |sj |−2k/k, (2.63)

F (st)
Pj = πρ0|A|2xj |sj |−2(1− ω2

j /ω
2) sin (2kdj)k/k. (2.64)

The secondary radiation forces, which are our prime interest, are produced by the
cross-products of the first and second terms in brackets. The limit analogous to that
considered here was first investigated by Doinikov & Zavtrak (1997) for the case of
two-bubble interaction. In order to show that the new theory recovers their results,
we also apply (2.60)–(2.62) to the case of two bubbles. Assuming that the two bubbles
are located as shown in figure 2, (2.61) and (2.62) take the form

B
(j)
00 = −xj

sj
[iA(j)

00 + x3−jh(1)
0 (kL)A(3−j)

00 /s3−j], j = 1, 2, (2.65)

B
(j)
1m = − 1

3
x3
j [iA

(j)
1m − (1− |m|)√3(−1)jx3−jh(1)

1 (kL)A(3−j)
00 /s3−j], m = −1, 0, 1. (2.66)

Substituting these equations into (2.60) and retaining only the cross-terms, one obtains
the secondary force as

F Sj = −1

2
ρ0x1x2Im

{
(−1)jh(1)∗

1 (kL)

sjs
∗
3−j

A
(j)
00A

(3−j)∗
00 ez

+
h

(1)
0 (kL)√
6 sjs3−j

A
(3−j)
00 [
√

2A(j)∗
10 ez + (A(j)∗

1–1 − A(j)∗
11 )ex]

}
, j = 1, 2. (2.67)

For a plane travelling wave and plane standing wave, (2.67) gives, respectively,

F (tr)
Sj =

2πρ0|A|2R1R2

|s1|2|s2|2L2
Im{(−1)j+1(i− kL)e−iχj s∗j s3−jez + eiχj (s1s2)

∗Lk}, (2.68)
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F (st)
Sj =

2πρ0|A|2R1R2

|s1|2|s2|2L2
Re{(−1)j+1(1 + ikL)e−ikLs∗j s3−j cos (kd1) cos(kd2)ez

−eikL(s1s2)
∗ sin (kdj) cos (kd3−j)Lk}, (2.69)

where χj = kL[1− (−1)j cos θI ]. Comparison of (2.68) and (2.69) with the correspond-
ing equations obtained in Doinikov & Zavtrak (1997) shows that they are in perfect
agreement. Furthermore, in the limit k → 0 both (2.68) and (2.69) reduce to

F (tr)
Sj =

2πρ0|A|2R1R2(−1)j+1ez

(1− ω2
1/ω

2)(1− ω2
2/ω

2)L2
, (2.70)

which is simply the classical Bjerknes formula for the radiation interaction force
between two gas bubbles in an incompressible ideal fluid (Crum 1975).

3. Numerical results
Numerical simulations have been made for two air bubbles in water. To perform

a more adequate comparison with the Bjerknes theory, the case was first run where
the bubbles were subject to a plane travelling wave propagating from left to right
along their centreline. Some representative results are plotted in figures 3–5 that show
the normalized (divided by |A|2) interaction force on the left-hand bubble versus the
dimensionless separation distance defined as D = L/(R1 + R2). Shown dotted are
predictions of the Bjerknes theory, equation (2.70). The solid curves present the force
that is obtained from (2.49) minus the primary radiation force. The latter is calculated
from (2.63). It was found that in all the cases investigated the series (2.49) converged
monotonically and fast. Therefore five first terms of (2.49) are sufficient to calculate
the force to a very good accuracy. For the cases shown in figures 3 and 5, the relative
error due to the truncation of (2.49) was found not to exceed 0.02%. In the case
shown in figure 4, where the second bubble is very close to resonance, the error is
larger, up to 0.66% at small separations.

Figure 3 illustrates the behaviour of two bubbles of equal size that are driven
above their monopole resonance frequency. It can be seen that the Bjerknes theory
is only valid for intermediate separation distances. For small separations, figure 3(a),
it greatly overestimates the force because of ignoring multiple re-scattering of sound
between the bubbles and their shape modes. For large separations, figure 3(b), the
Bjerknes theory predicts only a rapid decrease of the force in magnitude. What
actually happens is that the sign of the force oscillates, which is a consequence of the
finite compressibility of the host liquid. Note also that the first sign reversal occurs
at the separation distance D ≈ 33, which is much smaller than the value D = 150
corresponding to the wavelength of sound in the host liquid. To gain an insight into
why this happens, we can apply equation (2.68). We are able to do this since the
case we examine here corresponds to the limit investigated in § 2.6. Then, setting k‖ez
and neglecting radiation losses, one obtains from (2.68) the secondary force on the
left-hand bubble (bubble 1) as

F (tr)
S1 =

2πρ0|A|2x1x2

(1− ω2
1/ω

2)(1− ω2
2/ω

2)
G(kL)ez (3.1)

with G(kL) = (kL)−2 cos (2kL) + 2(kL)−1 sin (2kL). According to (2.50), the phase shift
between the primary (induced by the forcing) oscillations of the bubbles is given by
kL. This means that the bubbles begin to oscillate out of phase at L = 0.25λ. At first
sight one could expect that the interaction force between them should also change its
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Figure 3. Interaction force between two bubbles of equal size (R1 = R2 = 50 µm), driven above
resonance, as a function of the separation distance. The forcing is a plane travelling wave with the
frequency f = 100 kHz, propagating along the centreline of the bubbles from the left to the right.

sign at the same value of L. However, the force is a nonlinear (quadratic) effect that
results from the interaction between the combined oscillation of the bubble, which is
induced by both the forcing and the scattered wave from the other bubble, and the
overall action on it, which also includes both the forcing and the scattered field of the
other bubble. In the case of a compressible fluid, the structure of all the constituents
of this process is fairly intricate. As a consequence, the dependence of the force on L
is determined by the rather complicated function G(kL). Analysis of this latter shows
that it first changes sign at L ≈ 0.22λ, which is in agreement with what is seen in
figures 3–5. Recall that the figures were obtained numerically on the basis of the exact
equation (2.49), while (3.1) is an asymptotic formula that was derived analytically
in the limit xj, yj , Rj/rlj � 1. Therefore the good agreement between them can be
regarded as one more verification of the new extended theory.

Figure 4 gives an idea of the interaction between two bubbles of unequal size
that are driven in such a way that the monopole resonance frequency of the smaller
bubble is not much below the driving frequency. It can be seen that in this case the
deviation from the Bjerknes theory is even more substantial. At large separations,
a more profound oscillation of the force is detected. At small separations, the force
also changes from attraction to repulsion and thus keeps the bubbles from coalescing,
which should have been expected according to the Bjerknes theory. Finally figure 5
exemplifies the interaction between two bubbles driven below resonance. For large
separations, the oscillation of the sign of the force due to the liquid compressibility
is again observed, although it is now much softer than in the two preceding cases. At
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Figure 4. Interaction force between two bubbles of unequal size (R1 = 50 µm, R2 = 35 µm) driven
above resonance. The forcing is as in figure 3.

small separations, the force is found to be much larger than is given by the Bjerknes
theory. This should lead to a much faster coalescence of such bubbles.

Let us now turn to more realistic cases where the wavevector does not coincide
with the centreline of the bubbles. The following figures present trajectories of the
‘slow’ (time-averaged) translational motion of interacting bubble pairs, assuming that
the acoustic radiation force, given by (2.49), is balanced by the viscous drag force,
given by (Landau & Lifshitz 1959)

F vj = −4πηRjU j , (3.2)

where η is the liquid viscosity and U j is the time-averaged translational velocity of
the jth bubble. The inertial, buoyant and other forces are neglected for the sake
of simplicity because, first, the purpose of this study is to give an indication of the
effects of liquid compressibility on acoustic interparticle forces rather than accurate
modelling of bubble motions with the entire variety of natural processes, and second,
in many cases of interest the above forces are really dominated by the viscous drag.

As a compromise between speed of simulations and their accuracy, the radiation
force was calculated up to three first terms of (2.49). This is a satisfactory approxi-
mation since in all test cases the magnitude of the fourth (neglected) term of (2.49)
with respect to that of the first (dominant) term was found not to exceed 4%. In
some situations, however, the fourth term can play a part. In particular, in the cases
shown in figure 6(a–c), when the interaction force reverses at small distances, the first
three terms of (2.49) tend to cancel one another and therefore the contribution of the
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Figure 5. Interaction force between two bubbles of unequal size (R1 = 30 µm, R2 = 25 µm) driven
below resonance. The forcing is as in figure 3.

fourth term to the net force may be relatively large, although this changes nothing in
a qualitative sense. In such situations, the force was calculated up to the fourth term.

Figure 6 gives an overview of bubble trajectories in a plane travelling wave incident
at various angles θI on bubble pairs of various radii R1 and R2. The sound wave first
reaches the left-hand bubble, the driving frequency f is 130 kHz, and the acoustic
pressure amplitude is 0.1P0. The x- and y-axes of figure 6 are marked in terms
of dimensionless units of length that are defined as D = d/(R1 + R2), where d is
dimensional distance. The arrows next to the curves indicate the direction of bubble
motion. Shown dashed are predictions of the Bjerknes theory, which are obtained
from (2.63) and (2.70). In figure 6(a), θI = π/3, the temporal interval of computation
T = 100 a.c. (where a.c. means ‘acoustic cycles’), and R1 and R2 are equal to 50 µm and
30 µm, respectively, which corresponds to the resonant frequencies f1 = 66 kHz and
f2 = 110.9 kHz. Thus, both bubbles are driven above resonance. Therefore initially
they are attracted to each other, slowly moving in the direction of wave propagation.
According to the Bjerknes theory, the bubbles come into contact (and then probably
coalesce) within the interval Tc = 19 a.c. The extended theory shows, however, that
the interaction force becomes repulsive at small separations, as in figure 4, and the
bubbles stop approaching. Figure 6(b) shows the same bubble pair but at θI = π/6
and over T = 500 a.c. It is seen that the change of the angle of incidence of sound
noticeably changes the pattern of motion. The left-hand bubble now moves much
faster than the right-hand one. This is likely to be associated with the y-component of
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Figure 6. Trajectories of the time-averaged motion of two interacting bubbles in a plane travelling
wave; the x- and y-axes are marked in terms of dimensionless units of length, the driving frequency
f = 130 kHz, the acoustic pressure amplitude is 0.1P0: (a) θI = π/3, R1 = 50 µm (f1 = 66 kHz),
R2 = 30 µm, (f2 = 110.9 kHz; (b) θI = π/6, R1 = 50 µm, R2 = 30 µm; (c) θI = π/6, R1 = 30 µm,
R2 = 50 µm; (d) θI = π/4, R1 = 20 µm (f1 = 167.8 kHz), R2 = 22 µm (f2 = 152.2 kHz); (e) θI = π/4,
R1 = 30 µm, R2 = 24 µm (f2 = 139.2 kHz).

the interaction force, which at the given value of θI is increased and added favourably
to the primary radiation force on the left-hand bubble.

Note that physically it would be more correct to talk about the components of the
interaction force along the centreline of the bubbles and along the wavevector of the
imposed field, because it is clear that it is along those two natural spatial directions
that the actual components of the interaction force lie. However, we use the Cartesian
coordinates and therefore it is more convenient here to refer to components along
the x- and y-axes.

Parameters in figure 6(c) are the same as in figure 6(b), except that the bubbles
swap places. In other words, the situation is as if the sound field in figure 6(b) were
incident from the right. This again leads to a different pattern of motion and we can
see another manifestation of the y-component of the interaction force. This time it
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Figure 7. Trajectories of the time-averaged motion of two interacting bubbles in a plane standing
wave; the x- and y-axes are marked in terms of dimensionless units of length, the driving frequency
f = 100 kHz, the acoustic pressure amplitude is 0.1P0, the angle of sound incidence θI = π/3:
(a) D0 = 10, R1 = 38 µm (f1 = 87.2 kHz), R2 = 37 µm (f2 = 89.6 kHz); (b) D0 = 5, R1 = 25 µm
(f1 = 133.5 kHz), R2 = 27 µm (f2 = 123.4 kHz); (c) D0 = 10, R1 = 37 µm (f1 = 89.6 kHz),
R2 = 30 µm (f2 = 110.9 kHz).

counteracts the primary radiation force on the right-hand bubble and causes it to
move against the sound wave. In figure 6(d), θI = π/4, R1 = 20 µm (f1 = 167.8 kHz)
and R2 = 22 µm (f2 = 152.2 kHz). Thus, this figure illustrates the behaviour of two
bubbles that are driven below resonance. They are seen to experience strong mutual
attraction and come into contact very fast, within 16.5 a.c. The Bjerknes theory also
predicts the collision of the bubbles, but within a longer interval of 31 a.c. Finally,
figure 6(e) shows the motion of two bubbles one of which, the left-hand bubble
(R1 = 30 µm, f1 = 110.9 kHz), is driven above resonance, while the other, the right-
hand bubble (R2 = 24 µm, f2 = 139.2 kHz), below resonance. The bubbles are repelled
along their centreline, as the Bjerknes theory predicts. At the same time, however,
due to the non-zero angle of incidence of sound (θI = π/4), we again observe an
action of the transversal component of the interaction force. It predominates over the
primary radiation force on the left-hand bubble and thus makes it move in the left
lower instead of upper quadrant of the coordinate system.

Figure 7 shows the motion of the bubbles in a plane standing wave. The nearest
velocity node plane is on the left, the wave front is parallel to the y-axis, the wavevector
lies along the x-axis, the frequency is 100 kHz and the acoustic pressure amplitude is
0.1P0. As in figure 6, the coordinate axes are marked in terms of a dimensionless unit
of length and their origin is at the initial position of the equilibrium centre of the
left-hand bubble, which is at a distance D0 (in dimensionless units) from the velocity
node plane. The dashed curves correspond to the Bjerknes theory, equations (2.64)
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and (2.70), except for figure 7(b) where the predictions of the Bjerknes theory are
shown by thick lines.

In figure 7(a), both bubbles are driven above resonance. The primary radiation
force on bubbles of this sort is directed away from velocity nodes. However, the
interaction force is seen to overcome the primary force and causes the right-hand
bubble to move at first towards the left-hand one, against the wavevector. The
Bjerknes theory predicts the contact of the bubbles within the interval Tc = 10 a.c.
According to the extended theory, at a smaller spacing the interaction force becomes
repulsive and the right-hand bubble makes a sharp right turn. Closer inspection also
reveals that the bubbles’ trajectories are formed by small reciprocal motions as the
force is alternately attractive and repulsive. Figure 7(b) exemplifies the motion of the
bubbles when they are driven below resonance. Both theories predict collision and
coalescence, but the Bjerknes theory (thick lines) underestimates considerably the rate
of approach. Figure 7(c) demonstrates a very interesting pattern of motion. In this
figure, the left-hand bubble is driven above resonance, and the right-hand one, below
resonance. Therefore the left-hand bubble is subject to the primary force directed
away from velocity nodes, and the right-hand one, towards velocity nodes, while the
interaction force acting along their centreline is repulsive. It is these opposite forces
that make the bubbles take such a curious path. Again, as in figure 7(b), although the
predictions of the two theories agree qualitatively, there is a considerable quantitative
discrepancy. This time the Bjerknes theory overestimates the repulsive interaction
force.

4. Conclusion
An analytical expression has been derived for the time-averaged radiation inter-

particle force due to an acoustic wave field, assuming the media outside and inside
particles to be ideal compressible fluids, allowing for multiple re-scattering of sound
between the particles and their shape distortions, and imposing no restrictions on
the wavelength of sound, the number of the particles, their radii and the separation
distances between them. To test capabilities of the new theory, numerical calculations
have been carried out for two air bubbles in water for two types of forcing: a plane
travelling wave and a plane standing wave. Comparison has been made with predic-
tions of the Bjerknes theory. It has been shown that in the general case the behaviour
of the interparticle forces is far more complicated than is predicted by the Bjerknes
theory. It is expected that the new theory will make possible a more correct modelling
of collective behaviour of bubbles and drops in acoustic fields.

This research was supported by the European Commission under contract IC15-
CT98-0141.

Appendix. Integrals I1, I2, I3
The above integrals, defined by (2.27)–(2.29), are calculated by means of putting

them in the form of a sum of integrals of the following form:∫ 2π

0

dε

∫ π

0

dθ sin θ Y ∗nm(θ, ε)Yn′m′(θ, ε) = δnn′δmm′ , (A 1)

where δnm is the Kronecker delta. This equation is known as the orthogonality
condition of spherical harmonics.
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A.1. Calculation of I 1(n, m, n
′, m′)

The integral I 1 is easily made into a sum of integrals (A 1), using the recurrence
formulae for spherical harmonics (Varshalovich et al. 1975):

cos θ Ynm(θ, ε) = γn+1mYn+1m(θ, ε) + γnmYn−1m(θ, ε), (A 2)

sin θ Ynm(θ, ε)eiε = µn(−m)Yn−m+1(θ, ε)− µn+1m+1Yn+1m+1(θ, ε), (A 3)

sin θ Ynm(θ, ε)e−iε = µn+11−mYn+1m−1(θ, ε)− µnmYn−1m−1(θ, ε), (A 4)

where

γnm =

√
n2 − m2

(2n− 1)(2n+ 1)
and µnm =

√
(n+ m− 1)(n+ m)

(2n− 1)(2n+ 1)
. (A 5)

The final result is given by

I 1(n, m, n
′, m′) = I1xex + I1yey + I1zez, (A 6)

I1x = 1
2
(µn+11−mδn+1n′δm−1m′ + µn(−m)δn−1n′δm+1m′

−µnmδn−1n′δm−1m′ − µn+1m+1δn+1n′δm+1m′), (A 7)

I1y = 1
2
i(µn+1m+1δn+1n′δm+1m′ − µn(−m)δn−1n′δm+1m′

−µnmδn−1n′δm−1m′ + µn+11−mδn+1n′δm−1m′), (A 8)

I1z = (γn+1mδn+1n′ + γnmδn−1n′)δmm′ . (A 9)

A.2. Calculation of I 2(n, m, n
′, m′)

To reduce this integral to a sum of integrals (A 1), the following equations are applied
(Varshalovich et al. 1975):

∇Ynm(θ, ε) = e0∇0Ynm(θ, ε)− e+1∇−1Ynm(θ, ε)− e−1∇+1Ynm(θ, ε), (A 10)

∇0Ynm(θ, ε) = (n+ 1)γnmr
−1Yn−1m(θ, ε)− nγn+1mr

−1Yn+1m(θ, ε), (A 11)

∇+1Ynm(θ, ε) = −nµn+1m+1

r
√

2
Yn+1m+1(θ, ε)− (n+ 1)µn(−m)

r
√

2
Yn−1m+1(θ, ε), (A 12)

∇−1Ynm(θ, ε) = −nµn+11−m
r
√

2
Yn+1m−1(θ, ε)− (n+ 1)µnm

r
√

2
Yn−1m−1(θ, ε), (A 13)

where

e0 = ez, e+1 = − 1√
2

(ex + iey), e−1 =
1√
2

(ex − iey).

The resulting expression is as follows:

I 2(n, m, n
′, m′) = I2xex + I2yey + I2zez, (A 14)

I2x = 1
2
(nµn+1m+1δn+1n′δm+1m′ + (n+ 1)µn(−m)δn−1n′δm+1m′

−nµn+11−mδn+1n′δm−1m′ − (n+ 1)µnmδn−1n′δm−1m′), (A 15)

I2y = − 1
2
i(nµn+1m+1δn+1n′δm+1m′ + (n+ 1)µn(−m)δn−1n′δm+1m′

+nµn+11−mδn+1n′δm−1m′ + (n+ 1)µnmδn−1n′δm−1m′), (A 16)

I2z = [(n+ 1)γnmδn−1n′ − nγn+1mδn+1n′]δmm′ . (A 17)
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A.3. Calculation of I 3(n, m, n
′, m′)

This, most cumbersome integral is obtained using jointly (A 2)–(A 4) and (A 10)–
(A 13):

I 3(n, m, n
′, m′) = I3xex + I3yey + I3zez, (A 18)

I3x = 1
2
[n(n+ 2)µn+11−mδn+1n′δm−1m′ + (n2 − 1)µn(−m)δnn′+1δmm′−1

−n(n+ 2)µn+1m+1δn+1n′δm+1m′ − (n2 − 1)µnmδnn′+1δmm′+1], (A 19)

I3y = 1
2
i[n(n+ 2)µn+1m+1δn+1n′δm+1m′ − (n2 − 1)µnmδnn′+1δmm′+1

+n(n+ 2)µn+11−mδn+1n′δm−1m′ − (n2 − 1)µn(−m)δnn′+1δmm′−1], (A 20)

I3z = [n(n+ 2)γn+1mδn+1n′ + (n2 − 1)γnmδnn′+1]δmm′ . (A 21)
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